

IST-2003-511598 (NoE)

COGAIN

Communication by Gaze Interaction

Network of Excellence

Information Society Technologies

D4.1 Design specifications and guidelines for

COGAIN eye-typing systems

Due date of deliverable: 31.08.2005

Actual submission date: 05.09.2005

Start date of project: 01.09.2004 Duration: 60 months

IT University of Copenhagen

Project co-funded by the European Commission within the Sixth Framework Programme (2002–2006)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 1/26

Hansen, J.P., Johansen, A.S., Donegan, M., MacKay, J.C., Cowans, P., Kühn, M., Bates, R., Majaranta, P., and Räihä,
K.-J. (2005) D4.1 Design specifications and guidelines for COGAIN eye-typing systems. Communication by Gaze
Interaction (COGAIN), IST-2003-511598: Deliverable 4.1. Available at http://www.cogain.org/results/reports/COGAIN-
D4.1.pdf

Main author: John Paulin Hansen (ITU)

Contributors: Anders Sewerin Johansen (ITU)

Michael Donegan (ACE)
David J.C. MacKay and Phil Cowans (UCAM)
Michael Kühn (UNI KO-LD)
Richard Bates (DMU)
Päivi Majaranta and Kari-Jouko Räihä (UTA)

Thanks to: Participants of the Ph.D. course “Under the Hood of Advanced Writing Systems”, held in
conjunction with the Work Package 4 research retreat on “design of eye writing systems” at
the first COGAIN camp in Copenhagen, May/June 2005, who contributed as well.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 2/26

Table of Contents

EXECUTIVE SUMMARY.. 3

1 INTRODUCTION TO EYE-WRITING SYSTEMS... 4
1.1 Principles of eye writing... 4

1.1.1 Dwell-time selections .. 5
1.1.2 Scanning... 5
1.1.3 Eye writing by navigation and searching .. 5

1.2 Eye tools for editing text .. 6

2 USER-REQUIREMENT SPECIFICATIONS... 8
2.1 Usability factors in eye-writing systems... 8
2.2 Language, text, and language models in writing systems... 9
2.3 User requirements... 10

3 ARCHITECTURES OF EYE-WRITING SYSTEMS.. 15
3.1 Overview of the UKO system and its external links... 15
3.2 Overview of GazeTalk and its external links ... 17
3.3 Overview of the Dasher system and its external links... 18
3.4 Identifying the components ... 19

3.4.1 Input devices... 20
3.4.2 Output devices.. 20
3.4.3 User profiles and other settings .. 21
3.4.4 Language-model implementations.. 21
3.4.5 Language-model data (corpora) ... 22

3.5 Identifying cross-cutting issues ... 22
3.5.1 Platform issues ... 23
3.5.2 Licensing issues ... 23
3.5.3 Privacy and security.. 23

4 CONCLUSIONS ... 24

REFERENCES ... 25

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 3/26

Executive Summary

This deliverable defines common design guidelines and principles for eye-writing systems developed within
the COGAIN network. Unified specifications and a shared terminology for gaze interaction will be
established that may enable integration and exchange of modules and functionality between future eye-typing
systems inside and outside the COGAIN network. Through the convergence of methodology, exchange of
ideas, and software resources, the long-term goal is that the users of eye-writing systems will be able to
switch between systems and use their personalised features in all of them. A coordinated effort is needed to
bend the existing systems towards each other by a modular approach when assembling a communication and
environmental control solution for an individual user. This deliverable discusses the usability requirements
and needs assessments for eye-writing systems, and it offers recommendations for areas and software
solutions that may form the bases for integration.
Members of Work Package 4 agreed on the following:

• Common usability issues identified (cf. Chapter 2) should be taken into account when developing
eye-writing systems. The optimal eye-writing system presents as few targets as possible, with a
function as close to user expectations as possible, ideally placed as close as possible to the current
area of interest, in the expected place, which supplies unambiguous, specific feedback, preferably
allowing the user to detect and correct errors easily and with a minimum of interaction. In order to
support rote learning, the system must be fully predictable (or nearly so), lessening the need for
frequent visual verification.

• The current forms of system architecture (cf. Chapter 3) are complex yet flexible enough to allow for
the convergence. They all make it possible to interface with eye trackers at the level of standard
pointer control, and they all allow for export and exchange of the language models generated. The
export/exchange of language models may become a standard file format as an effect of the
convergence.

• The COGAIN network opts for a strategy of convergent de-facto implementations, as none of the
partners would otherwise have the resources needed to rebuild (or substantially modify) the large
amount of code base in accordance with new programming specifications. The COGAIN Work
Package 2 standard wrapper (see D2.2 Requirements for the common format of eye movement data
by Bates et al., 2005) for interfacing to eye-tracking systems, which provides a single API to all eye
trackers, might be of value here.

• Convergent de-facto implementation would include the ability to launch other eye-writing systems
from within each other, and to translate one language model format to another system format, using
software tools we recommend for development within the network.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 4/26

1 Introduction to eye-writing systems

Augmented and Alternative Communication (AAC) is the general term for systems that enable people with
physical or cognitive handicaps to communicate or operate computers or other equipment. AAC systems
range from simple design modifications of the ergonomics of standard QWERTY keyboards to input systems
for special symbol languages (e.g. Bliss or pictograms), with simplified user interfaces that allow for input by
users who have both motor and cognitive difficulties.

Eye-writing systems are found in two basic forms: 1) systems built for AAC in general that are also well-
suited to eye writing, as with standard on-screen keyboards (e.g. Point for Windows and Wivik), or 2) systems
built specifically for eye writing (e.g. GazeTalk), some of which may also be suitable for AAC in general.

A primary goal of many eye-writing systems is to allow disabled people to take part in conversation—to
function as a voice prosthetic. These systems are characterised by:

• Independence from keyboards as an input device for producing text.
• Production of conversation-like text (‘type-to-talk’) as a primary focus.
• Speed and accuracy rather than presentation as essential features.
• Multimodal interaction, especially gaze input, as a solution to the user’s limitations in mobility and

motor performance.
Secondary goals include the ability to compose text for writing—letters, e-mails, diaries, memoirs, and so on.
System requirements would include the support of text editing (e.g. handling portions of text), saving,
copying, and pasting; if possible, some kind of spell-checking would be desirable as well.

Further goals of eye-writing systems include the ability to fill out electronic forms, such as text fields in web-
search tools, the names of files, or URLs.

1.1 Principles of eye writing
To use a conventional mouse, a user must first position the cursor over the relevant item before a selection
can be made. Similarly with eye tracking, the item to be selected first must be focused on. Many eye-tracking
devices actually emulate a conventional mouse, with the user’s eyes serving as the mouse itself.

Most eye-typing systems are implemented by the use of an on-screen virtual keyboard. An eye-tracking
device tracks the user’s point of gaze, and a computer program analyses the gaze behaviour. From the
analysis, the system decides which letter the user is focusing on and whether the user wants to type it. The
process comprises the following steps. First, the user decides which letter he or she wants to type and focuses
his or her gaze at the corresponding virtual letter on the on-screen keyboard. Typically, the system then gives
feedback by highlighting the focused letter, for example, by placing a cursor on the virtual key. The user
confirms the selection by continuing to fixate on the letter, thus using time as an activation command.
Alternatively, the user can also trigger a switch to select the highlighted item. The system may also provide
auditory feedback to indicate that a virtual key press was successful. The result of these steps is the selected
letter appearing in the open text field (for more information, see Majaranta and Räihä, 2002).

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 5/26

1.1.1 Dwell time selections
Focus can be shifted from item to item by redirecting gaze fixation. The duration of an uninterrupted fixation
on an item is called dwell time. Dwell times applied in various systems range from 100 to 3000 milliseconds
(ms), depending on tracking performance, user skill, type of command, and cost of errors (Hansen et al.,
2003). If dwelling is used for focusing, the system usually provides the user with some indication that the
predefined dwell time has elapsed. The feedback methods may be acoustic (e.g. a ‘click’) or animated (e.g. a
moving figure). Mouse emulation with dwell time is the most widely used method for selecting an item using
the point of gaze to define the location of focus.

There are three different methods for implementing dwell activation (Hansen et al., 2003):

Continuous-dwell activation. A command is executed when a button is activated without
interruption for a certain preset time. If the activation is terminated before that preset time, the time
counter is reset. This type of dwell activation is found in most gaze-activated systems.

Accumulated-dwell activation. A command is executed when a button is activated for a certain
preset time, regardless of the actual number of activations. The time (evidence) counter of the
command may be reset by some local or global system event.

Adaptive-dwell activation. The dwell time (continuous or accumulated) becomes dependent on user-
behaviour patterns. Patterns might be based on frequency of use, frequency of selection error, number
of activations terminated by the user, or other factors.

The time remaining before activation can be indicated within the button as a progress bar or an animation
sequence. Feedback can also be integrated by changing the pointer symbol or using auditory signals.

1.1.2 Scanning
Some people have difficulty fixing their gaze because of their state of health. Some cannot sustain their gaze
for the duration needed to focus, while others are able to move their eyes in only one direction. In such cases,
other methods for selecting an item are needed.

The eyes can be used as simple one-way or two-way switches (Majaranta and Räihä, 2002). A method called
scanning can be used to shift the focus from one item to another. Scanning is widely used among the disabled
in various AAC systems. So called ‘step scanning’ allows the user to use one switch to change the focus from
one item to another, and another switch to select the item in focus. ‘Automatic scanning’ is used if the user
has only one switch; the focus automatically shifts from item to item after a definable time, and the user only
needs to activate the switch when the desired item (e.g. a letter) is in focus (highlighted).

Item by item scanning is quite a slow procedure. Therefore it is advantageous to scan larger groups of items
before focusing on a discrete item.

1.1.3 Eye writing by navigation and searching
Dasher (Ward, 2001; Ward and MacKay, 2002) provides a completely different way of using gaze direction
from dwelling and scanning. Human eyes evolved for navigation, among other things, and Dasher facilitates
the writing of text by navigation through a zooming world. When the user spots the next syllable or word that
he or she desires, the display zooms in on possible continuations of the sentence. When Dasher’s language
model does a good job, the user’s brain will easily spot the continuation that is sought, and, a moment later,
the continuation after that, and so on. Even when the language model does an insufficient job of predicting the
required text, the user can still find the desired text by navigating Dasher’s predictions in standard
alphabetical order.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 6/26

Dasher operates in all languages, and its predictions can be personalised to the user’s writing style easily by
feeding the language model with example documents. The language model learns constantly as the user
writes. During the first few minutes of use, novices may find Dasher difficult to understand, but once this
entry barrier is overcome, excellent communication speeds are possible. After two hours’ practice, writing
speeds of 25 words per minute can be achieved, and the frequency of spelling errors with Dasher is negligibly
small. Most experienced users find writing with Dasher much less stressful than writing with on-screen
keyboards by dwell selection.

1.2 Eye tools for editing text
In principle, one could exploit the editing features of any common text editor (such as Microsoft Word) if it
could be operated by gaze. Because the accuracy of the measured point of gaze is not good enough for
operating the tiny objects on a conventional computer operating system (such as Microsoft Windows), special
techniques have been developed for gaze control. The most obvious solution is to magnify parts of the screen
to enable selecting the small targets (Ashmore et al., 2005; Bates and Istance, 2002).

Another problem with gaze control is that many standard applications rely heavily on a mouse. Several
solutions have been developed, but the most common is an on-screen palette that depicts buttons for
equivalent mouse actions (left and right click, drag, scrolling). The problem here is that the context is lost.
With a conventional mouse, the user moves the mouse by hand and can observe the mouse cursor and the
results of the mouse actions simultaneously. With a gaze-controlled operation, however, using the separate
buttons requires the user to first look at the command button (e.g. right click) and then redirect his or her gaze
to the target object.

We propose an eye widget called iPie (Fig. 1). A ‘pie menu’ is a pop-up menu that appears at the place of
focus. Menu items are placed in a circular pattern around the centre of the pie, and a stroke or gesture
activates the command that falls in the section that lies in the direction of the gesture. Pie menus have proved
faster than ordinary linear menus in normal mouse-based interaction (Kurtenbach and Buxton, 1994).

iPie is an eye-manipulated pie menu with a large hole at its centre. The menu can be shown as needed (e.g. by
extended dwell time) and manipulated and positioned by gaze. iPie does not necessarily move along with the
user’s gaze; the user can freeze the iPie in place and use gaze for selecting its commands.

Figure 1. iPie allows the user of a gaze-interactive system to edit text by activating a widget on top of the selected text.
When activated, the user unfolds rings of hierarchical functions by gazing at the relevant item on the iPie.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 7/26

iPie may have the potential to solve some lingering problems related to eye typing and editing—of course,
further testing is needed in these areas:

• By transferring commands into the iPie, the number of commands on the virtual keyboard decreases.
More space can be devoted to important virtual keys or the text area.

• Because the iPie is context-sensitive, the needed commands are available to the user as soon as the
menu is activated.

• The user does not lose the context, because there is no need to switch between the text and the virtual
keyboard. The user can see the task at the same time he or she works on it because of the hole in the
centre of the pie menu. (An alternative design is to make the sections partly transparent.)

• The number of commands (sections) in the iPie can be quite high if one uses the area outside the
iPie—that is, the sections extend and widen beyond the visible pie. Thus, the inaccuracy of gaze
should not be as much of a problem with iPie as it is using conventional menus with very small menu
items.

Simple tasks can be difficult with gaze control, such as positioning a caret when one wants to edit a word
inside a chunk of text. If mouse controls and other editing commands could be placed within a context-
sensitive iPie menu, the user could conceivably execute actions much more easily, as the needed commands
would be conveniently available near the target object.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 8/26

2 User-requirement specifications

This chapter summarises and discusses some of the major points from the COGAIN deliverable 3.1 "User
requirements report with observations of difficulties users are experiencing" from the application
development point of view. In addition, it includes parts adapted from a work in progress by Johansen and
Hansen (2005).

One of COGAIN’s aims is to help to make Eye-Control Technology available and accessible to as many of
those who might benefit from it as possible. This is particularly important because their other methods of
access to technology might be slow, painful, harmful, or even impossible for them. Globally, there are
millions of people who fall into this category. They range from some of those with conditions such as athetoid
cerebral palsy to those with strokes or head injuries. With athetoid cerebral palsy, there might be strong, but
uncontrolled, body and head movements. Certain people with head injuries, on the other hand, might find any
form of movement, including eye movement, difficult to either initiate or control.

Eye control is a comparatively recent development for people with disabilities. From the literature and data
collected it seems that, at present, eye control can only be used effectively to meet a limited range of what
many potential users require of it. Furthermore, it can only be used effectively by a limited number of people
with disabilities (see COGAIN D3.1 by Donegan et al., 2005 for more information).

While there are many people with disabilities who use technology successfully by one access method or
another, the critical issue is the quality of access in relation to usability issues. While they might be able to
use technology to achieve of the things they wish to without using Eye Control, the fact remains that Eye
Control might potentially offer them a more effective, efficient, and satisfying form of access. Their current
methods of access to technology might be slow or labour-intensive for them, whereas Eye-Control
Technology might offer a much more direct and efficient form of access, at least for some of the applications
they wish to use.

2.1 Usability factors in eye-writing systems
Usability may be defined as ‘the effectiveness, efficiency, and satisfaction with which specified users can
achieve specified goals in particular environments’ (ISO/DIS 9241-11). Major dimensions of usability have
been characterised by Patrick Jordan (2000) by the terms in Figure 2.

A fully predictable system, such as a static QWERTY on-screen keyboard, intuitively supports rote learning,
which lessens the cognitive load for skilled users, as well as allows them to apply more advanced strategies.
The goal of touch-typist training is in fact to achieve a level of rote learning that allows the typist to focus
attention on the subject material to be typed, with occasional visual verification of the actual text typed.

The quality of feedback that the eye-writing system supplies on input is also very important, both in terms of
the level of performance that can be achieved and the number of usage scenarios that are made possible with
the device. If no feedback is given at all, the user will spend more time verifying that the intended result was
achieved. If the feedback is unclear, either because it is inconsistent or disproportional to the input, it may
induce lower performance than would the absence of feedback; it would be counterproductive if pressing a
letter key in a word processor programme resulted in a loud, jarring sound, whose pitch was dependent on the
letter typed. This principle is well known from the normal operation of current (2005) mainstream computers:
mice and keyboards provide both tactile and auditory feedback when a button or key is pressed, and system

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 9/26

messages have distinct visual and auditory cues depending on their content (tip, information, warning, severe
error condition, etc.), which all help us to verify that we have operated the system as we intended.

Figure 2. The major usability components of efficiency. Legend: Guessability—Cost of first-time use;
Learnability—Cost of reaching a competent level of performance; Experienced-user performance—Efficiency level of trained user;

System potential—Theoretical performance level; Reusability—Cost of being away from the system for some time.

Finally, the cost of detecting and correcting errors is a significant factor, especially when designing systems
for casual or novice users who can be expected to exhibit a higher error rate than expert users. Errors can be
divided into two classes: motor and cognitive. Given sufficient feedback from the system, the operator should
be able to detect motor errors with some ease. Cognitive errors, however, cannot always be detected or
corrected by the operator, such as in the case of dyslexic operators who enter text. Designing systems that are
robust and efficient in the face of errors is thus two tasks in one, as techniques that aim to reduce or aid in
recovering from motor errors are not necessarily effective when applied to cognitive errors, and vice versa.

The general conclusion is that the optimal system presents as few targets as possible, with a function as close
to user expectations as possible, ideally placed as close as possible to the current area of interest, in the
expected place, which supplies unambiguous, specific feedback, preferably allowing the user to detect and
correct errors easily and with a minimum of interaction. In order to support rote learning, the system must be
fully predictable (or nearly so), lessening the need for frequent visual verification.

2.2 Language, text, and language models in writing systems
Text is highly redundant, as can be seen from the fact that one usually achieves compression rates of >50%
when compressing text with programmes such as bzip and WinZip. Although we usually store text using eight
bits per character, experiments by Shannon (1951) indicated that the entropy, or the actual information
content, of English text is between 0.6 and 1.2 bits per character. It follows that, on average, a very low input
rate is required in order to compose text. However, this is only possible if the device used for text entry can
interpret this information correctly, in effect inferring the other seven bits from general knowledge of
language and context using a language model. Language models are used extensively in eye-writing systems

Expirience with product

Effectivity

Re-usability

1. succes

Guessability gab

Learning gab

Expert-
level

System potential

learningcurve

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 10/26

to allow for selections by gazing at one key at a time. They speed up writing, but they also introduce usability
problems of their own.

Language models can be based on many different algorithms, with varying results in terms of performance,
capability, and resource consumption. A simple language model (frequency count) achieves an entropy of
4.03 bits per character (Shannon, 1951), whereas an advanced state-of-the-art model (maximum entropy)
achieves 1.2 bits per character (Rosenfeld, 1996). The traditional statistical language modelling n-gram
approach is relatively high-performance at 1.5 bits per character (Tilbourg, 1988). David J. Ward (2001)
tabulated the performance of most current approaches and discussed the construction of language models
extensively.

An alternative to the traditional n-gram word-level model is to run a compression algorithm in reverse, as
seen in the Dasher system (Ward, 2001) and the ‘reactive keyboard’ (Darragh et al., 1990). In Ward (2001),
this approach was implemented and evaluated. The conclusion drawn was that, although it did have several
advantages—primarily, that training the model is quite a lot easier than is the case for an n-gram word-level
model—the performance was lower than what can be achieved with the n-gram approach. In both cases, the
‘PPM’ compression algorithm was used, which, according to the tabulation in Ward (2001), performs at 2.39
bits per character, as opposed to 1.5 bits per character for an n-gram model. The PPM compression algorithm
was described in greater detail by Ward (2001) and Darragh et al. (1990).

Most language models must be ‘primed’ to perform optimally. Take, for example, a simple 3-gram model,
which predicts a word on the basis of the two words preceding it; the model requires priming with two words
before it can supply any predictions for the third. In other words, most (possibly all) language models will
supply predictions that are unreliable, or at best suboptimal, for the first few words or characters of input.
Consequently, when designing text-input systems that are based on language models, one must allow for a
certain error rate, even if the language model performs very well on average.

One of the most common problems when using word-level language models is the built-in dictionary: what
happens when the user wants to enter a word that is not in the dictionary? It is possible to calculate the
probability that a word is ‘unknown’, but obviously it is impossible to consistently predict the actual unknown
word. It is not merely impractical to add all known words to the dictionary (Webster’s Ninth New Collegiate
Dictionary boasts almost 160,000 entries!)—but it is virtually impossible, as new words are continually added
to the vocabulary of all living languages. Additionally, many countries are bilingual or even multilingual,
which not only compounds the dictionary problem, but also necessitates a text-entry mode that is either not
based on a language model, or that allows one to switch between or integrate several language models.

A well-known property of language models is that an in-domain model performs better than an out-of-domain
model, even when the domains and the test corpus are very similar. This indicates that an adaptive language
model, which integrates the user’s vocabulary and language patterns, would improve performance.
Evaluations performed in Carlberger (1997) and Darragh et. Al. (1990) showed that the inclusion of an
adaptive language model does indeed increase both user-acceptance and text-production rates.

2.3 User requirements
In a word, User Requirements are all about choice. The following is a list of just a few of the features
necessary to accommodate the very varied needs of users of Eye-Control Technology. Some of the features
were first identified in the COGAIN deliverable D3.1 User Requirements Report (Donegan et al., 2005), and
several new required features have since been added. The widest possible variety of on-screen software
interfaces needs to be offered, to expand the range of choices and the likelihood of matching the system to the
user’s needs and abilities.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 11/26

Resizable cells and grids. Regardless of which interface software is used to allow users to interact with their
eye-control system, it needs to be as flexible as possible. In a grid-based system, the grids need to be
resizable, for example. One application, The Grid, enables the user to set cell and grid size as needed to
optimise performance, instead of requiring the number of cells and grid size to be fixed, as with some
dedicated eye-control systems (Fig. 3).

Figure 3. Both of these grids were designed with the same framework programme. The programme is flexible enough to be used by
those who can eye-point accurately (left) as well as those who cannot eye-point accurately and need larger cells (right).

A range of input methods. Users require eye-control software that can accommodate a wide range of input
methods in addition to eye control, whether (a) to change from one method to another if and when their
condition changes, (b) to distribute the physical load as necessary, (c) to enable multimodal access, or (d) to
use their technology in a wide range of environments, as some eye-control systems do not work well out of
doors. There are many reasons for accommodating multimodal access. For example, while many users would
rather stick to dwell-select or blink as their mouse-button equivalent, others would prefer to use access
methods in combination, such as eye control and voice, eye control and switch, and so on.

One example of a user requiring choice of access method might arise if eye movement itself becomes difficult
or impossible as the user’s condition progresses. This very concern was shared by Danish ALS patient Arne
Lykke Larsen, in an e-mail sent to COGAIN system developers in 2005:

‘Many final-stage people with ALS (PALS) experience that their eye muscles become weaker
and weaker. This is contrary to what it says in most textbooks on ALS, but it is actually
happening. I can mention that some Japanese PALS, who have survived 20 years using a
ventilator, can only stare straight out. Secondly, many final-stage PALS take drugs
(scopoderm, atropin, etc.) against salivating. Unfortunately, these drugs interfere with the
sight, leading to loss of precision and accuracy.’

Supplementing gaze selection (i.e. pointing) can take various forms, including the utilisation of a user’s weak
bio-potentials—EOG, EMG, or EEG—which can be picked up from skin on the user’s head. Bio-potentials
can be used to drive single switches or position an analogue pointer. Single-switch selection of GazeTalk is
made possible by an auto-scanning feature. Dasher supports one-dimensional pointing by analogue signals.

Choice of symbols vs. text input. Much of the software that is written for eye-gaze systems is restricted to
eye writing using text only. However, from COGAIN’s experience with users so far, it is clear that they
require much more from their eye-control applications. They require, for example, a choice of symbols vs.
text (see Fig. 4), a choice of text styles and colours, a range of speech facilities, and a choice of languages.
Many people with disabilities communicate using symbols instead of text. For some, this is necessary because
they do not have a high level of literacy. For others, this is through choice, as they regard it as a quicker and
more efficient form of communication. Indeed, many users of symbol-based systems (e.g. Minspeak) are able

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 12/26

to communicate more quickly and efficiently than those who use text-based communication. For this reason,
users need to be able to choose symbols or text in their eye-control applications, whether for writing, social
communication, or both.

Figure 4. With a powerful framework programme, users can choose whether to use symbols or text.

A selection of text styles and colours. Literate users may find it preferable or even essential for their text
output to be presented in a specific way. For this reason, there needs to be a full range of text output styles,
including choice of font, font size, and foreground and background colour (Fig. 5).

Figure 5. Many users with physical disabilities have a visual impairment of some kind.
With a powerful framework programme, a wide range of fonts, background colours,

and more are available to meet individual needs.

A range of speech facilities. When using eye control for writing or generating symbols, the user needs to
have the option to receive auditory feedback, with the computer speaking each letter, word, or phrase. This
would reduce the need to visually double-check what is being written (Majaranta et al., 2003), or even
eliminate that need altogether. Eliminating the need for this visual check would 1) speed up the writing
process, and 2) overcome any difficulties related to the so-called ‘Midas Touch’ – the unintentional activation
of a function during a visual search. When using eye control for social communication, a range of speech
facilities would, of course, be essential. For example, users should be able to set the speed of spoken output,
as well as the gender and age of the synthesised voice, according to personal preference.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 13/26

Figure 6. Portuguese is one of more than 100 languages available for use with Dasher (left).
GazeTalk comes in Danish, English, and Japanese versions (shown at right).

A choice of language. Clearly, eye-control software should support as many users, globally, as possible.
Therefore, the option to use as many languages as possible should be provided. Dasher, for example, is
available for use with more than 80 languages (see Fig. 6, left).

Editing facilities. When writing text for storage (and not just type-to-talk), composition and visual
presentation (layout) become important factors to consider. A range of text-editing features should be
provided. This is particularly important, for example, for users who are in the workplace. Figure 7 shows how
basic editing functions may be activated in Dasher (left) and GazeTalk (right).

Figure 7. Basic editing functions in Dasher (left) and GazeTalk (right).

Accommodation of poor spelling. As previously mentioned, many typing systems use a language model to
speed up typing. Some of the language models, however, are unable to predict what the user is typing if the
user is not spelling the word correctly. Consequently, the word predictor will not provide any full-word
suggestions. In cases like this, the user should be able to keep typing in his or her own (possibly incorrect)
way, being supported by, for example, an alphabetic ordering of character keys. This is the case for both
Dasher and GazeTalk.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 14/26

The ability to handle national language and special characters. Most standard keyboards handle non-
standard-letter localisation in an unsatisfactory or inefficient fashion. For instance, QWERTY relegates the
Danish letters ‘æ’, ‘ø’, and ‘å’ to the undesirable far-right position (right-hand little finger), and the multi-tap
input method used on many mobile phones requires as many as eight and a minimum of four key presses to
enter these characters, depending on implementation. For almost all keyboards and input methods, the
character ‘@’ requires complicated combinations of keys that are otherwise rarely used, even though the ‘@’
is essential for writing e-mail addresses. This issue is especially relevant for Japanese writing, in which
Hiragana, Katagana, and Kanji characters all should be easily available.

Easy shift between national language and English version. Say, a German user would like to send an e-
mail to an English friend. The German would appreciate being able to shift to an English language model
without having to change to another writing system. In other examples, support for bilingual writing could be
a necessity.

Adjustable speed. Novice users often need more time to master a writing system than trained users do, and at
the end of the day, even trained users might prefer a longer response-time window than they use when they
are not tired. This is relevant to users of the dwell-select feature, for example. Beginners with this method
might use a 1.0-second dwell select. However, with practice and flexible software, some can achieve dwell-
select speeds as fast as 0.2 seconds.

Access to system commands from within the eye-writing system. Users often need to switch to operating
applications other than the writing system or to execute basic system commands. Therefore, it should be
possible at least to minimise the eye-writing system with buttons big enough for eye control (as can be done
with GazeTalk) to make room for other applications, or to execute commands from within the program itself.
For instance, there are plans to integrate Dasher with SAW (ACE Centre) to enable the user to access and
control applications from within Dasher itself.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 15/26

3 Architectures of eye-writing systems

Chapter 3 presents the results of extensive discussion between Work Package 4 members at a research retreat
held in Copenhagen, May/June 2005. The agreement presented in the executive summary has been circulated
among all Work Package 4 members following the retreat.

The purpose of investigating the architecture of eye-typing systems is threefold: 1) to remove obstacles to
innovation and implementation, 2) to improve the usability of eye-typing systems, both for users (‘ordinary’
usability, i.e. ergonomics and functionality) and system managers (installation, configuration, maintainability,
etc.), and 3) to identify likely areas for further scientific investigation.

Our overarching strategy is a conventional one: analyse the systems, identify points of commonality for
possible standardisation, and investigate them. Further, we identify crosscutting issues, which impact most or
all identified components.

It is axiomatic in both science and engineering that any solution can be made arbitrarily complex. On the
other hand, developing a complex set of standards takes time, and is not always warranted. Hence, in the
interest of providing workable guidelines quickly, we have chosen to analyse the items in each group and
categorise them as ‘short-term recommendations’, ‘long-term recommendations’, and ‘merits investigation’.

The intention is that most, perhaps all, short-term recommendations—which all should be easily implemented
and useful in terms of interoperability and the reusability of components and data—be agreed on and
implemented by all participating development teams.

To ground the analysis in the realm of current eye-writing systems, the architectures of three COGAIN
systems will first be outlined.

3.1 Overview of the UKO system and its external links
The communication aid UKO-II (Kühn and Garbe, 2001) resides on the programmable and extendable
XEmacs text editor. XEmacs provides many text-entry and manipulation functions useful in the text-entry
context. Operating system support, basic applications such as e-mail, and a development environment
including extensive documentation are at the programmer’s fingertips. All components of the communication
aid dealing with input or output have been implemented as Emacs Lisp modules.

UKO-II provides a keyboard with a four-button keyboard (see Fig. 8). The upper-left panel represents the
text-editing buffer. The upper-right panel lists all word suggestions for the ambiguously typed word currently
under consideration. In the lower part, all keys are shown. The number of buttons has been specified in
advance. This parameter depends on the user’s motor functions or on the buttons available on the device. If
fewer than four physical buttons are available, the keys have to be selected on a virtual keyboard via
scanning. A genetic algorithm was used to calculate a near-optimal distribution of letters in order to minimise
the length of suggested word lists. The keyboard of UKO-II is tailored to a user with cerebral palsy. No more
than four buttons can be accessed directly. Three buttons provide ambiguous-letter keys labelled by sets of
letters for typing in the text-editing window. The fourth button invokes meta-level commands such as letter
deletion and word disambiguation.

Words are entered by pressing the corresponding ambiguous key once for each letter. Once the word is
completed, the user disambiguates the input by selecting the intended word in a list of hits provided by the

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 16/26

language model. Figure 9 depicts the situation after the word ‘aid’ has been typed—by pressing the second,
the third, and the second button again (key sequence <2> <3> <2>)—and before the user selects the targeted
word in the list of suggestions. If the target word is not known to the system, it is possible to spell the word
and include it in the lexicon for future use. Other actions in the command mode provide text navigation and
editing as well as invocation of the speech-output system. These actions are triggered either by overloading
the three letter keys with commands, or by entering and disambiguating a command name.

Figure 8. UKO-II after the word ‘aid’ has been typed by pressing the second, the third,
and the second button again (key sequence <2> <3> <2>).

The input for selecting keys in UKO-II can be any mouse or key event input device, including switches, head
or eye tracker. If only one or two input signals are available, UKO-II contains integrated scanning modes for
automatic, sequential and groupwise scanning. The code is extended right now to facilitate also the input of
regular Emacs commands via UKO-II. In an ongoing project, UKO-II is connected to a robust eye tracker
being developed at the University of Koblenz-Landau that detects four or more specific eye end positions.

On the output side of UKO-II, a speech synthesizer and a GIDEI interface has been integrated. The speech
synthesizer interface provides access to the Microsoft Speech API via sockets with the help of an auxiliary
socket server and thus allows speech output via any speech synthesizer following the SAPI. Another interface
that can be used within UKO-II is the GIDEI protocol that allows transferring key and mouse commands via
the serial ports to another Windows computer. With GIDEI, it is therefore possible to control an external
computer using the preferably mobile computer running UKO-II.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 17/26

3.2 Overview of GazeTalk and its external links
The goal of the GazeTalk (Hansen et al., 2001) project was to develop an AAC system that is based on eye
tracking, that supports several languages, that facilitates fast text entry, and that is not only sufficiently
feature-complete to be deployed as the primary AAC tool for users, but also sufficiently flexible and
technically advanced to be used for research purposes. The system was designed for multiple target
languages, initially Danish, English, and Japanese, and support is currently being extended to Swedish and
Norwegian. The system has a built-in voice-output subsystem that supports the use of either external (usually
synthetic) voice using the SAPI, API, or the Windows clipboard, or an internally developed digitised voice
system. This digitised voice is currently available in Danish only, with a vocabulary of approximately 33,000
words.

The motivations for the project were to explore and eventually deploy eye tracking as an input modality for
ALS patients, and to explore issues in text input in constrained user interfaces (UI), such as mobile devices.
We explore the relationship between text input in AAC systems and mobile devices extensively in (Johansen
and Hansen, 2005).

The GazeTalk system consists of three elements:

• The actual GazeTalk programme, which implements the basic UI elements and functionality (e-mail,
voice output, saving and loading documents, etc.).

• StateEditor, a layout editor used for designing and building the layouts used in GazeTalk.
• A library of layouts built with StateEditor, designed for various situations (deployment, research,

etc.).
All layouts in the library use the four-by-three matrix format shown in Figure 6 and 7, which allows for a
maximum of twelve active on-screen buttons.

GazeTalk and StateEditor support various text-input modes, which include direct selection of letters, letter
and word prediction/completion, and several types of ambiguous or clustered keyboards. The current standard
configuration is the ‘one-direct’ layout. This layout has been tested by simulation and experimentation, and
was shown in theory to be slightly more effective than using four suggestions selected using a two-step
procedure. In actual use, this layout exhibited similar performance, less user confusion, and greater increase in
text-production speed than did the previous standard layout incorporating eight suggestions with two-step
selection.

GazeTalk contains a wide variety of reporting functions that allow an experimenter to measure variables such
as average selection speed, words per minute, pointer trails in terms of entry, exit, and time spent per button,
the type and specific content of buttons inspected and selected, as well as keeping track of the user’s
navigation within the system.

A core feature of the system is the use of statistical language modelling to increase the input rate and allow
for a relatively low number of on-screen targets (currently ten active targets/buttons, with two of the available
twelve positions reserved for text display). GazeTalk employ both letter prediction and whole-word
prediction. Both prediction subsystems (letter and word) are implemented using a relatively simple Markov
model, as we are only concerned with retrieving the ranks of words. The word-level model uses a 3-gram
back-off model (Katz, 1987). Originally, the language model was trained using approximately 800,000 words
of Danish text gathered from newsgroups and e-mail in-boxes.

We have since implemented a better-performing language model. As reported in Johansen et al. (2003), it was
decided to do so initially through increasing the size of the vocabulary and training corpus. The open-source
Danish dictionary Den Store Danske Ordliste was used as a basis for cleaning and organising a corpus
collected from all available Danish Usenet groups. That resulted in a final corpus consisting of approximately

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 18/26

35,000,000 words, with a vocabulary of approximately 89,000 words, elaborated using the same methodology
and used when constructing the initial language model (described in detail in Johansen et al., 2003). This new
language model used the same algorithms as the original model, reimplemented for improved space efficiency
in the face of a training corpus that is nearly two orders of magnitude larger than the original corpus.

GazeTalk is implemented for the Microsoft Windows platform using the Borland C++ Builder (BCB)
development environment, which is largely compatible with the better-known Delphi Pascal–based system,
also from Borland. Most features are implemented using the BCB/Delphi-specific ‘VCL’ system for reusable
components, but almost all non-interactive functionality is implemented using standard C++ classes and
facilities. This specifically includes the language model implementation, whereas the dwell-sensitive buttons
and various text-input fields are implemented in a very platform-specific way, which is probably not
immediately reusable in other development environments, even those based on Windows and C++.

The internal component structure largely follows the component breakdown developed by the ‘Camp
COGAIN’ workshop (Fig. 9), except that no attempt was made to consolidate API and functionality for input
or output devices.

3.3 Overview of the Dasher system and its external links
Dasher (Ward and MacKay, 2002) is implemented as a stand-alone application in a modular fashion. The
primary separation of functionality is into a 'core', which is designed to facilitate cross-platform development,
and a user interface, which is implemented on a per-platform basis. All modules are implemented in C++. The
core handles the display of the main Dasher canvas, as well as the dynamics, language model and so on. The
user interface embeds the core, as well as providing a simple text editor, file handling facilities and
connectivity with other components of the host operating system.

The primary development platforms for Dasher are Microsoft Windows, Windows CE and Linux through the
GNOME desktop environment. The core is presented as a custom GTK+ user-interface component under
Linux and as a C++ class designed to facilitate embedding under Windows and Windows CE.
Implementations for Apple OSX and Linux running QT and GPE also exist.

The core is subdivided into a number of modules representing distinct functions, which are designed to be
'pluggable', ie to minimise the overhead in replacing them with alternative versions. The key components are
the dasher model, which handles the dynamics of the display, the 'view', which actually renders the model and
the language model, which makes predictions used to update the model. The basic language model
implementation uses a variant of Prediction by Partial Match (PPM) to make predictions. Other models
currently under development use a more sophisticated word-based model and enable Japanese to be entered as
Hiragana and then converted to Kanji.

All text functions of Dasher make use of Unicode, which greatly facilitates internationalisation. The language
in which text is to be entered may be selected by the user, which decides the alphabet which is presented as
well as customising the predictive model using a training text for the appropriate language. Alphabets are
specified using an XML file format, and over 100 such files are currently available. The language model is
adaptive, and can therefore learn specific vocabulary, and the user can import their own text (for example past
e-mail) to further improve the predictions. The colour scheme is configurable in a similar way to allow for
users' preferences.

As well as simple text entry, Dasher implements a 'control mode', which allows the user to control Dasher,
perform basic editing tasks and access additional functions such as speech through the Dasher interface itself
rather than relying on external user-interface components.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 19/26

Input to Dasher is flexible and can be through a pointing device (e.g. an eye-tracker or mouse), a device
capable of providing one or more continuous signals (for example a breath interface), or any number of
discrete buttons. Various configurations exist to modify the behaviour of Dasher so that it is more suitable for
particular input devices, for example, a one dimensional mode allows both speed and direction to be
controlled by a single input signal, an eye-tracker mode implements automatic calibration and modified
dynamics and button modes implement various methods for driving Dasher through a button interface. As
with the rest of Dasher, the design is such that new devices can be interfaced with relative ease.

In addition to editing functions, the user interface provides speech synthesis through the GNOME speech
libraries on Linux and the Microsoft Speech API on Windows, and control of other applications through the
platforms' respective accessibility APIs.

3.4 Identifying the components
As part of the Ph.D. course on Under the Hood of Advanced Writing Systems (held during the ‘COGAIN
Camp’ workshop in Copenhagen, May 30–June 3, 2005), the participants analysed and identified the
necessary components in eye-typing systems. These components are graphically represented in Figure 9:

Figure 9. Graphical representation of components essential to eye-typing systems.

The major groupings of components are thereby:

• Input devices
• Output devices
• User profiles and other settings
• Language model implementations
• Language model data (corpora)

Head-tracker
Eye-tracker
Mouse
Etc.

Speech

Text/Display

WWW

Language
Models

Data

Corpus
Standard
settings
(e.g. dwell
time)

Dasher

UKO

GazeTalk

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 20/26

3.4.1 Input devices
One might expect that the majority of input devices, if not all, could be categorised by a few simple properties
and traits, such as dimensionality (1D, 2D, 3D) and number of buttons (e.g. for mice). Unfortunately, even a
casual investigation of input devices reveals that this is a surprisingly complex area thanks to the wide variety
of input devices available. A non-exhaustive list of devices already supported by current COGAIN
applications includes eye trackers, buttons, five-way navigation (digital joystick), breath control, keyboard,
mouse, tablets, pens, and touch screens.

First and foremost, communication with input devices must often be two-way, in order for the application to
be able to query the device on various parameters, and for the device to communicate its current status. In the
case of some device classes, specifically gaze tracking, it is often desirable to allow for a very close
integration with the input device indeed, as the interaction between the application and the gaze tracker may
be very complex.

Possible properties for input devices:

• Accuracy, which may change dynamically
• Input rate
• Dimensionality
• Relative or absolute positioning (e.g. mouse or touch tablet)
• Discrete or analogue (e.g. five-way navigator or analogue joystick)

Furthermore, some devices may allow for calibration, or other features that are neither suitable nor necessary
for all types of devices.

Short-term recommendation: As the variety of input devices makes attempts at categorisation exceedingly
difficult, we recommend the initial focus be to define suitable interfaces for the most common input devices,
mainly gaze (obviously), mouse, five-way navigators (joystick, arrow keys, etc.), and single-switch and direct
pointing devices (digitisers, touch-screen, pen, etc.).

Long-term recommendation: We recommend that the work on standardising the means for interaction with
input devices be considered an ongoing process, with the dual purpose of improving existing interfaces and
extending support to other input devices.

Merits investigation: As topics for long-term investigation, we recommend additional work on identifying
points of communality and an investigation of ways to ‘disguise’ one device as another (e.g. use a gaze
tracker as a mouse). This is interesting both from a practical, usage, or reuse-oriented point of view, and also
from the scientific point of view (see e.g. Bates and Istance, 2003).

3.4.2 Output devices
Because the primary focus of COGAIN is on text input and output, it is a relatively simple task to define and
implement the short-term goals for this module. Our immediate target output devices—currently text-to-
speech, Braille, and printers—all accept a text stream as their primary input. More advanced use of output
devices, or a more-inclusive definition of ‘output’, can thus be considered a long-term task. In order to
facilitate interoperability and reuse on several computing platforms, the recommendation of the workshop is
that the UTF-8 format be used, as it encodes all national characters in a standardised, unique way.

Short-term recommendation: Design a simple interface for output that accepts a UTF-8 stream of text.
Implement adaptors for the common output devices that conform to the interface. Some facilities for feedback
may be deemed necessary, for example, to highlight words as they are read by a Text-To-Speech (TTS)
system.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 21/26

Long-term recommendation: Investigate the case for a more advanced output interface definition. Consider
whether remote control of other applications (e.g. common e-mail programs, web browsers, word processors,
etc.) should be considered output, and if so, which functionality should be accessible and how.

Merits investigation: This is a practical engineering task but it may also be interesting to study e.g. how an
eye mouse or a head mouse performs in the role of the more conventional hand-operated mouse.

3.4.3 User profiles and other settings
This is potentially the most complex component, as a fully realised and generic implementation will represent
the complexity of all subsystems, and additionally add some of its own.

The technical goal of a unified, standardised settings system is twofold: 1) to provide a standardised way for
programmers to store and retrieve various settings, and 2) to provide a list of standard settings that COGAIN
systems should understand and comply with. The user benefit is that it is then possible (ideally) to change
from one system to another without having to reconfigure anything. For the system integrator, there is a
potential labour and training savings in only having to learn one tool and understand one standard for
configuration settings.

Unfortunately, the variety of the COGAIN products and their subsystems to be configured conspire against
the design of a simple, well-defined, and yet inclusive system for settings. The potential complexity of input
devices has been mentioned. Further, several settings will be inherent to individual COGAIN programs, or
even in some cases a single mode or subsystem of one program.

In other words, an extremely detailed standard for settings will increasingly reflect implementation details for
individual programs.

Further, the goal of an advanced standard for settings must balance the work necessary to design and
implement it against the time and effort it would save. One should therefore consider that users today in fact
rarely switch between AAC systems, and that installation and configuration are events that occur only a few
times in any usage scenario. Hence, perhaps this effort is better spent on implementing self-calibrating
programmes that automatically adjust to usage, improve the ergonomics of the configuration process, or both.

Short-term recommendation: Define and implement a simple API for storing and retrieving settings,
preferably using XML for cross-platform support. Define a simple set of settings common to most or all
COGAIN programs as a starting point. Define a way for program-specific settings not covered by these
general settings to be marked, so other programs will be able to avoid trying to interpret them accidentally.

Long-term recommendation: Investigate a method for allowing off-site persistence of settings for backup
and sharing. Evaluate and extend the standard settings defined previously.

Merits investigation: The above analysis might be too pessimistic or simplistic, and the actual potential
ergonomic improvements and timesavings should be investigated. We advise quantifying the potential gains
and required efforts, in order to determine whether an advanced system would be a case of 'You're not going
to need it': spending too much time up-front, building a flexible, but byzantine and unwieldy, structure, or 'too
simple': developing a solution that is too simplified a model of the actual problem—versus investing some
more time in getting it 'just right'.

3.4.4 Language-model implementations
Technically, the use of a language model is optional in AAC systems. However, all of the current COGAIN
systems integrate language models in the core design to such a degree that they could not possibly do without
one. We expect this trend to continue in future designs.

There are several ways to implement language models. Current COGAIN systems feature:

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 22/26

• Context-dependant vs. static (GazeTalk and Dasher vs. UKO II)
• Word level vs. character level (UKO II and GazeTalk vs. Dasher)
• Ambiguous vs. literal interpretation of input (UKO II, GazeTalk in Tx configuration vs. Dasher and

GazeTalk in normal configuration)
• Dynamic adaptation to user vs. static model (all systems, depending on configuration)

Short-term recommendation: As we have several working implementations, the main challenge is to make
one or more of them available as a reusable component (see ‘Licensing issues’, below) and define a suitable
API for interacting with it, taking platform issues into account. Initiate work on making all implementations
Unicode (UTF-8)–compliant.

Long-term recommendation: Unify the number of models supported by COGAIN. It is reasonable to expect
that all features could be implemented in two models (word-based and letter-based), thus reducing the amount
of time spent maintaining, extending, and improving models.

Merits investigation: A possible long-term goal is the development of advanced, higher-performance
models. The potential payoff is unknown but expected to be limited, as much work has been done in this area
over the last three decades, with precious little to show for it in terms of increased prediction quality. Time
may be better spent on general improvements of ergonomics.

3.4.5 Language-model data (corpora)
Most language-model implementations depend on training data, or corpora, to avoid depending entirely on
text produced by the user. The base-level performance of any language model is highly dependent on the
suitability of topic domain, dictionary, and size of the training data.

Some corpora are obviously already in existence in COGAIN projects, as are tools for collecting and editing
corpora, distilling dictionaries, and (compiled) language model data. Still, not all major European Union
languages (not to mention minor EU languages) are currently covered by the existing corpora.

Another issue is how to store and process language data collected from the user during actual use. These data
are generally of great value in terms of improving predictor performance, as they are highly domain-specific.

Short-term recommendation: Store user text history as a UTF-8 text stream without additional formatting or
tags. Make available corpora and tools used in the current projects, given that licensing issues can be solved
beforehand.

Long-term recommendation: Design or choose standard model formats. Develop a library of corpora and
(compiled) models for all EU languages. Develop a mechanism for off-site persistence of user-produced text
(backup and interoperability). Develop tools for generating user-oriented corpora from previous text
generated by the user (old documents, web pages, blogs, e-mail, newsgroup entries, etc.).

Merits investigation: Is anything beyond naïve storage of user text production necessary? In other words,
should data be ‘tagged’ with task-related information, intended recipient, time of day/month? Traditional
dictionary and corpora collection are not scientifically interesting tasks, as they are largely resolved and
thoroughly investigated topics in the field of (computational) linguistics.

3.5 Identifying cross-cutting issues
Some issues have a potential bearing on all, or nearly all, of the aforementioned components. We identified
the following crosscutting issues:

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 23/26

• Cross-platform. The existing COGAIN systems run on a variety of computing platforms, which may
give rise to additional complexity.

• Licensing. Some COGAIN systems use an open license. Some are closed. The commercial partners
may wish to further redevelop some currently open components as closed-source.

• Privacy and security. If the systems store extensive information on usage (e.g. text input by the
user), it may be desirable or necessary to employ privacy-protection measures.

We discuss these issues further below.

3.5.1 Platform issues
As can be seen from sections 3.1 and 3.2 the applications developed by COGAIN members are deployed, and
often depend, on a wide variety of hardware and software platforms. A set of recommendations must
therefore be cross-platform to be relevant for current COGAIN activities.

At this point, however, we defer design recommendations for how to achieve this, as it seems more natural to
agree on what should be standardised before we determine how it should be implemented. We do encourage
members to consider platform issues when reviewing the items in this section, and to investigate or suggest
ways to facilitate cross-platform reuse of components and data.

3.5.2 Licensing issues
A licensing issue is a legal challenge, rather than a scientific or engineering one. Nevertheless, it must be
resolved before any reuse, or even sharing, of actual source code can be initiated, as the consequences of not
doing so are currently unknown. What we as engineers and scientists can do at this point is 1) compile a list
of the licenses currently in use in COGAIN projects, and 2) elect or hire a competent agency to resolve any
licensing issues for us, or at least provide us with appropriate guidelines.

3.5.3 Privacy and security
One could argue that privacy and security really are matters to be resolved by the computing environment, but
considering that our users are unable to log in and out in an ordinary fashion, they are also unable to utilise
the protection offered by the current systems. Hence, it is both a question of (mental) ergonomics, that is,
whether the user can rest assured that his or her data and actions are indeed private, which in some cases can
be of legal import. In some countries, the developers of an AAC system may be liable if a user’s data are
shared or processed without express permission. For the time being, we propose that this be dealt with by
leaving the decision up to the user, or possibly having him or her sign a waiver before use of the system is
allowed.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 24/26

4 Conclusions

The purpose of this task is mainly to support innovation in the niche by helping innovators avoid ‘reinventing
the wheel’ in terms of analysis and implementation of common, necessary components. The secondary
purpose is to provide a taxonomical framework that can guide further scientific investigation of this area.

One of COGAIN’s primary, practical, implementation-oriented tasks is to develop guidelines and reference
implementations for eye-typing systems and components of such systems (preferably reusable). At this stage,
we have initiated the process by performing initial analysis, which identifies the components of the systems,
as well as initial work on a taxonomy for further subdivision. Partial recommendations have been completed
for some components, and topics for further investigation are largely identified and categorised.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 25/26

References

Ashmore, M., Duchowski, A.T. and Shoemaker, G. (2005) Efficient Eye Pointing with a Fisheye Lens.
Proceedings of GI 2005, May 9–11, 2005, Victoria, BC, Canada. Canadian Human-Computer
Communications Society (CHCCS)/ACM.

Bates, R. and Istance, H.O. (2002) Zooming interfaces! Enhancing the performance of eye controlled pointing
devices. Proceedings of the Fifth International ACM SIGCAPH Conference on Assistive
Technologies (ASSETS 2002).ACM Press, pp.119–126.

Bates, R. and Istance, H.O. (2003) Why are eye mice unpopular? A detailed comparison of head and eye
controlled assistive technology pointing devices. Universal Access in the Information Society 2(3),
pp. 280-290.

Bates, R., Istance, H., and Spakov, O. (2005) D2.2 Requirements for the Common Format of Eye Movement
Data. Communication by Gaze Interaction (COGAIN), IST-2003-511598: Deliverable 2.2. Available
at http://www.cogain.org/results/reports/COGAIN-D2.2.pdf

Carlberger, J (1997) Design and Implementation of a Probabilistic Word Prediction Program ; NADA report
TRITA-NA-E9751, Swedish Royal Institute of Technology, dept. of Numerical Analysis and
Computer Science (NADA), 1997.

Darragh, J.J., Witten, I.H. and James, M.J. (1990) The Reactive Keyboard: A Predictive Typing Aid. IEEE
Computer 23(11), pp.41–49.

Donegan, M., Oosthuizen, L., Bates, R., Daunys, G., Hansen, J.P., Joos, M., Majaranta, P., and Signorile, I.
(2005) D3.1 User requirements report with observations of difficulties users are experiencing.
Communication by Gaze Interaction (COGAIN), IST-2003-511598: Deliverable 3.1. Available at
http://www.cogain.org/results/reports/COGAIN-D3.1.pdf

Hansen, J.P., Hansen D.W., and Johansen, A.S. (2001) Bringing Gaze-based Interaction Back to Basics.
Proceedings of Universal Access in Human-Computer Interaction (UAHCI 2001), New Orleans,
Louisiana, pp. 325–328.

Hansen, J. P., Johansen, A. S., Hansen, D. W., Itoh, K. and Mashino, S. (2003). Command Without a Click:
Dwell Time Typing by Mouse and Gaze Selections. Human-Computer Interaction – INTERACT´03.
M. Rauterberg et al. (Eds.) IOS Press, pp.121–128.

Johansen, A.S. and Hansen, J.P. (2005, to appear) Augmentative and alternative communication: The future
of text on the move. Paper accepted for publication in The International Journal “Universal Access in
the Information Society”.

Johansen, A.S., Hansen, J.P., Hansen, D.W., Itoh, K., and Mashino, S. (2003) Language technology in a
predictive, restricted on-screen keyboard with ambiguous layout for severely disabled people. EACL
2003 Workshop on Language Modeling for Text Entry Methods, April 13, 2003, Budapest, Hungary.

Jordan, P. (2000) An Introduction to Usability. Taylor & Francis.
Katz, A. (1987) Estimation of probabilities from sparse data for the language model component of a speech

recognizer. IEEE Transactions on Acoustics, Speech, and Signal Processing. VOL ASSP-35, no. 3,
March 1987.

Kurtenbach, G. and Buxton, W. (1994) User learning and performance with marking menus. Proceedings of
ACM CHI’94 Conference on Human Factors in Computing Systems. Vol. 2, ACM, 218.

Kühn, M., and Garbe, J. (2001) Predicctive and Higly Ambigiuous Typing for a Severely Speech and Motion
Impared User. Proceedings of Universal Access in Human-Computer Interaction (UAHCI 2001),
New Orleans, Louisiana, p. 933–937.

Communication by Gaze Interaction (COGAIN), IST-2003-511598

19.10.2005 26/26

Majaranta, P. and Räihä, K. J. (2002) Twenty Years of Eye Typing: Systems and Design Issues, Proceedings
of the Symposium on ETRA 2002: Eye Tracking Research & Applications Symposium 2002, New
Orleans, pp.15–22.

Majaranta, P., MacKenzie, I. S., Aula, A., & Räihä, K.-J. (2003) Auditory and visual feedback during eye
typing. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (CHI
2003). New York: ACM, pp. 766-767.

Rosenfeld, R. (1996) A maximum entropy approach to adaptive statistical language modelling. Computer,
Speech and Language 10: pp.187–288.

Shannon, C.E. (1951) Prediction and entropy of printed English. Bell Systems Technical Journal 30:pp.50–64.
Tilbourg, H. (1988) An Introduction to Cryptology. Kluwer Academic Publishers.
Ward, D.J. (2001) Adaptive computer interfaces. Ph.D. thesis, Inference Group, Cavendish Laboratory,

University of Cambridge, November 2001,
http://www.inference.phy.cam.ac.uk/djw30/papers/thesis.html (verified August 2005).

Ward, D.J. and MacKay, D.J.C. (2002) Fast hands-free writing by gaze direction. Nature 418(6900): 838.

